

Initiatives Under Study

Demand Access Service (DAS)

Andre Fortin Code 531

Introduction

 Provide to TDRSS customers the ability to access Multiple Access Forward and Return services without prior scheduling

Targeted Customers

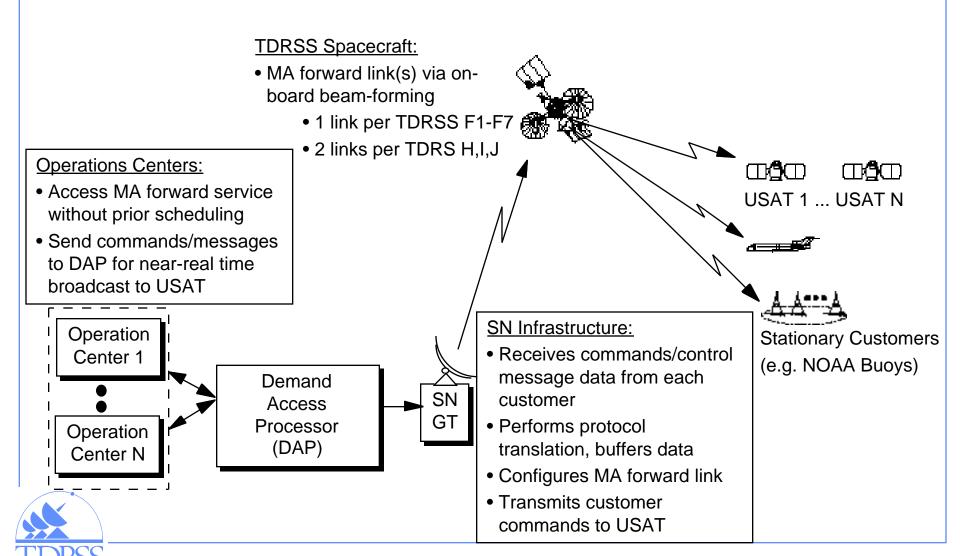
- Demand access MA service is for TT&C
- Orbiting customers
 - Near term communications needs (based on survey of existing customers)
 - Return data rate: Typically 32 kbps, potential for 128 kbps max.
 - Limited forward data needs (1 kbps for a few minutes several times/day)
 - For current customers, need for forward link contact time driven by tracking
 - Strong desire for rapid, reliable access to TDRSS (East and West) communications without forecast scheduling/User Planning System
- Non-orbiting customers balloons, aircraft and UAV's
 - Continuous return link (4000 bps 50,000 bps)
 - Infrequent commanding (with possible exception of voice applications)
- Semi-stationary customers
 - Potential for large numbers of semi-stationary customers (NOAA buoys)
 - Communications needs
 - Low return data rate (< 4800 bps), few minutes of return data each hour
 - Rare commanding

Ideal Requirements

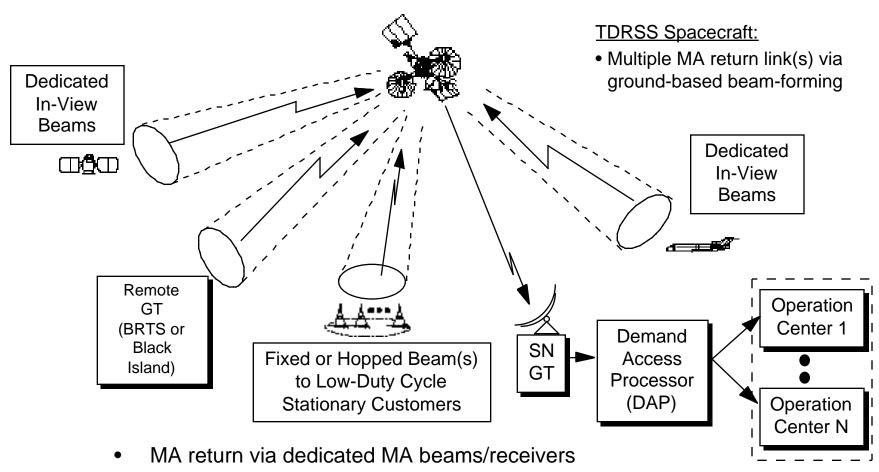
- Provide TDRSS MAF and MAR services
- Provide services in near real time
- Minimize cost of customer systems required for demand access
- Minimize operational complexity and effort for customer service access
- Support all classes of customers: stationary, suborbital (e.g., balloons, aircraft), orbiting spacecraft

Ideal Requirements

(continued)


- Provide service to customer without prior scheduling
- Utilize TCP/IP protocol for all telemetry/commands for newer MOCs, encapsulated Nascom blocks for legacy MOCs
- Utilize NASCOM network to communicate to TDRSS customers
- Allow buffering option for commands (TCP/IP customers only)
- Queue requests for services on a FIFO basis
- Provide tracking services

MA Forward Demand Access Service Concept



MA Return Demand Access Service Concept

- Support to stationary customers via shared beams
- Beamformer/receiver capacity can grow to accommodate increased usage

Proposed System Specifications Phase I

- Share MA resources with previously scheduled customers
- Automate service requests currently accomplished via telephone
- Utilize TDRS East, TDRS West & TDRS Spare
- DAP will schedule service via NCC, using TDRSS Unscheduled Time information to select windows of opportunity
- Minimum 6 minutes delay until service start (Ground Terminal constraint)
- Communicate via TCP/IP and Nascom block encapsulated customers

Operations Concept Phase I

- Multiple Access Forward (MAF) Service
 - Customer selects service (utilizing TCP/IP protocol) via Demand Access Processor (DAP)
 - Customer sends spacecraft command, vectors, USERID
 - DAP returns message to indicate the earliest time service can begin
 - Customer has option to cancel service
 - Customer notified when command shall be sent (non-buffered) or is being sent (buffered)
 - Customer notified when transmission of command from DAP is complete
 - Customer verifies successful transmission via telemetry on dedicated return link

Operations Concept Phase I

- Multiple Access Return (MAR) Service
 - Dedicated return service
 - Telemetry sent directly to customer MOC
 - DAP uses TCP connection to customer MOC to relay telemetry, or
 - DAP sends a message to direct customer to receive data via NASCOM

Operations Concept Future Phases

- Near real-time service (several seconds to service start)
- Compute visibility of TDRS to customer spacecraft and buffer commands until spacecraft is visible
- Emergency customer service

Summary

- Phased implementation
- Phase I scheduled for completion late 1997.
- System will evolve as new customers desire access
- 2 forward links available with TDRS H,I,J.
- Concepts/architectures/project status will be constantly updated on DAS home-page
 - "http://www530.gsfc.nasa.gov/das"

